PERBANDINGAN TAMPILAN LIPINSKI’S RULE OF FIVE PEPTIDA AKIBAT ALEL A1/A2 GEN CSN2 SAPI PERAH

  • Hermawan Setyo Widodo Fakultas Peternakan, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Merryafinola Ifani Fakultas Peternakan, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Rizak Tiara Yusan Fakultas Peternakan, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Yusuf Subagyo Fakultas Kedokteran, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Afduha Nurus Syamsi Fakultas Peternakan, Universitas Jenderal Soedirman, Purwokerto, Indonesia
Keywords: Lipinski’s rule of 5, peptida, kasein beta, susu

Abstract

Keragaman gen CSN2 menyebabkan perubahan urutan asam amino dari histidin pada alel A1 menjadi proline pada A2. Keragaman tersebut dapat memberikan potensi adanya perbedaan sifat peptida yang dihasilkan. Penelitian ini bertujuan untuk mengetahui adanya perbedaan peptida bioaktif dan karakteristik druglikeness. Penelitian ini dilakukan secara in silico meliputi pemotongan sekuens protein oleh enzim tripsin, kimotripsin dan pepsin. Peptida spesifik dari alel A1 dan A2 selanjutnya dibandingkan sifat bioavailabilitasnya berdasarkan Lipinski’s rule of 5. Hasil yang diperoleh yakni terdapat peptida unik VYPFPGPIPNSL dari alel A2 dan VYPFPGPIHNSL dari alel A1. Kedua peptida memiliki berat molekul, jumlah donor H, jumlah akseptor H, LogP dan TPSA berurutan yakni 1300,52vs.1340,55Da; 12vs.14; 16vs.17; -1,806vs.-2,346; 431,81vs.469,28. Kedua peptida melanggar kriteria Lipinski’s Rule of 5, sehingga tidak dapat diserap ke dalam tubuh. Simpulan yang diambil yakni alel A1 dan A1 gen CSN2 menghasilkan peptida unik, namun tidak dapat diserap tubuh.

References

Benet, LZ, CM Hosey,O Ursu dan TI Oprea. 2016. BDDCS The Rule of 5 and Drugability. Advanced Drug Delivery Reviews. 101 : 89–98. https://doi.org/10.1016/j.addr.2016.05.007
Chen, D, N Oezguen, P Urvil, C Ferguson, SM Dann, dan TC Savidge. 2016. Regulation of Protein-ligand Binding Affinity by Hydrogen Bond Pairing. Science Advances. 2(3). https://doi.org/10.1126/sciadv.1501240
Coimbra, JTS, R Feghali, RP Ribeiro, MJ Ramos, dan PA Fernandes. 2021. The Importance of Intramolecular Hydrogen Bonds on The Translocation of The Small Drug Piracetam Through a Lipid Bilayer. RSC Advances. 11(2) : 899–908. https://doi.org/10.1039/D0RA09995C
Daina, A, O Michielin dan V Zoete. 2017. SwissADME: A Free Web Tool To Evaluate Pharmacokinetics, Drug-Likeness And Medicinal Chemistry Friendliness Of Small Molecules. Scientific Reports, 7(1) : 42717. https://doi.org/10.1038/srep42717
Gao, Y, C Gesenberg, dan W Zheng. 2017. Oral Formulations for Preclinical Studies. In Developing Solid Oral Dosage Forms. 455–495. Elsevier. https://doi.org/10.1016/B978-0-12-802447-8.00017-0
Hallén, E, A Wedholm, A Andrén dan A Lundén. 2008. Effect Of Β-Casein, Κ-Casein And Β-Lactoglobulin Genotypes On Concentration Of Milk Protein Variants. Journal of Animal Breeding and Genetics. 125(2): 119–129. https://doi.org/10.1111/J.1439-0388.2007.00706.X
Hamley, IW. 2017. Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chemical Reviews. 117(24) : 14015–14041. https://doi.org/10.1021/acs.chemrev.7b00522
Ibrahim, HR, AS Ahmed, dan T Miyata. 2017. Novel Angiotensin-Converting Enzyme Inhibitory Peptides From Caseins And Whey Proteins Of Goat Milk. Journal of Advanced Research. 8(1) : 63. https://doi.org/10.1016/J.JARE.2016.12.002
Li, X, GWK Spencer,L Ong, dan SL Gras. 2022. Beta Casein Proteins – A Comparison Between Caprine And Bovine Milk. Trends in Food Science & Technology. 121, 30–43. https://doi.org/10.1016/j.tifs.2022.01.023
Maximo da Silva, M, M Comin,TS Duarte, M Foglio, J de Carvalho, M do Carmo Vieira, dan AN Formagio. 2015. Synthesis, Antiproliferative Activity and Molecular Properties Predictions of Galloyl Derivatives. Molecules. 20(4) : 5360–5373. https://doi.org/10.3390/molecules20045360
Pizarro, MG, V Landi, FJ Navas, JM León, A Martínez, J Fernández, & JV Delgado. 2020. Nonparametric Analysis Of Casein Complex Genes’ Epistasis And Their Effects On Phenotypic Expression Of Milk Yield And Composition In Murciano-Granadina Goats. Journal of Dairy Science. 103(9) : 8274–8291. https://doi.org/10.3168/jds.2019-17833
Thompson, SJ, CK Hattotuwagama, JD Holliday, dan DR Flower. 2006. On The Hydrophobicity Of Peptides: Comparing Empirical Predictions Of Peptide Log P Values. Bioinformation. 1(7) : 237. https://doi.org/10.6026/97320630001237
Vacca, GM, ML Dettori,G Piras, F Manca, P Paschino, dan M Pazzola. 2014. Goat Casein Genotypes Are Associated With Milk Production Traits In The Sarda Breed. Animal Genetics. 45(5) : 723–731. https://doi.org/10.1111/age.12188
Widodo, HS, TY Astuti, P Soediarto dan AN Syamsi. 2021. Identification of Goats’ and Cows’ Milk Protein Profile in Banyumas Regency by Sodium Dedocyl Sulphate Gel Electrophoresis (Sds-Page). Animal Production. 23(1) : 27–33. https://doi.org/10.20884/1.JAP.2021.23.1.37
Widodo, HS, TW Murti, A Agus, dan W Widodo. 2019. Mengidentifikasi Peptida Bioaktif Angiotensin Converting Enzyme-inhibitor (ACEi) dari Kasein β Susu Kambing dengan Polimorfismenya Melalui Teknik In Silico. Jurnal Aplikasi Teknologi Pangan. 7(4) : 180–185. https://doi.org/10.17728/jatp.3008
Published
2023-07-23
How to Cite
Widodo, H., Ifani, M., Yusan, R., Subagyo, Y., & Syamsi, A. (2023). PERBANDINGAN TAMPILAN LIPINSKI’S RULE OF FIVE PEPTIDA AKIBAT ALEL A1/A2 GEN CSN2 SAPI PERAH. PROSIDING SEMINAR NASIONAL TEKNOLOGI AGRIBISNIS PETERNAKAN (STAP), 10, 27-32. Retrieved from https://jnp.fapet.unsoed.ac.id/index.php/psv/article/view/2212
Section
Articles

Most read articles by the same author(s)