CAIRAN RUMAN SEBAGAI INOKULUM DALAM MENINGKATKAN KANDUNGAN NUTRIEN SILASE BATANG PISANG
Main Article Content
Abstract
Downloads
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
Afonso, R. B., Adivi, L. N., Linehan, K., O’Donovan, M., Hill, C., Ross, R. P., & Stanton, C. (2025). Potential of silage inoculants to mitigate methane production from the rumen: A systematic review. Journal of Dairy Science. https://doi.org/10.3168/JDS.2025-27063
Balo, E. F. S., Pendong, A. F., Tuturoong, R. A. V, Waani, M. R., Malalantang, S. S., Peternakan, F., Sam, U., Manado, R., & Korespondensi, *. (2022). Pengaruh lama ensilase terhadap kandungan bahan kering (BK), bahan organik (BO), protein kasar (PK) sorgum varietas pahat ratun ke-1 sebagai pakan ruminansia. ZOOTEC, 42(1), 74–80. https://doi.org/10.35792/ZOT.42.1.2022.41090
Ding, H., Han, Z., Li, J., Li, X., Dong, Z., Zhao, J., Wang, S., & Shao, T. (2022). Effect of Fibrolytic Enzymes, Cellulolytic Fungi and Lactic Acid Bacteria on Fermentation Characteristics, Structural Carbohydrate Composition and In Vitro Digestibility of Rice Straw Silage. Fermentation 2022, Vol. 8, Page 709, 8(12), 709. https://doi.org/10.3390/FERMENTATION8120709
Guo, T., Guo, T., Cao, Y., Guo, L., Li, F., Li, F., & Yang, G. (2021). Changes in the Fermentation and Bacterial Community by Artificial Saliva pH in RUSITEC System. Frontiers in Nutrition, 8, 760316. https://doi.org/10.3389/FNUT.2021.760316/BIBTEX
Huyen, N. T., Martinez, I., & Pellikaan, W. (2020). Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows. Agronomy 2020, Vol. 10, Page 1482, 10(10), 1482. https://doi.org/10.3390/AGRONOMY10101482
Jatkauskas, J., Vrotniakiene, V., Amaral, R. C. do, Witt, K. L., & Cappellozza, B. leda. (2024). Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research). Plants 2024, Vol. 13, Page 2894, 13(20), 2894. https://doi.org/10.3390/PLANTS13202894
Koivunen, E., Jaakkola, S., Heikkilä, T., Lampi, A. M., Halmemies-Beauchet-Filleau, A., Lee, M. R. F., Winters, A. L., Shingfield, K. J., & Vanhatalo, A. (2015). Effects of plant species, stage of maturity, and level of formic acid addition on lipolysis, lipid content, and fatty acid composition during ensiling. Journal of Animal Science, 93(9), 4408–4423. https://doi.org/10.2527/JAS.2014-8813
Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020–4033. https://doi.org/10.3168/JDS.2017-13909
Li, C., Nair, J., Chevaux, E., McAllister, T. A., & Wang, Y. (2025). Effect of Inoculation of Lactic Acid Bacteria and Fibrolytic Enzymes on Microbiota in the Terminal and Aerobically Exposed Short-Growing Season Whole-Plant Corn Silage. Fermentation 2025, Vol. 11, Page 530, 11(9), 530. https://doi.org/10.3390/FERMENTATION11090530
Marques, B. de S., Costa, K. A. de P., Silva, L. M. da, Costa, A. C., Ferrari, G. C., de Lima, J. F., da Silva, A. F., Matos, W. P., Gonçalves, L. F., Lima, D. A. S., Ferreira, J. V., Pontes, E. F., & Oliveira, F. F. P. (2025). Use of Bacterial-Enzymatic Inoculant Improves Silage Quality and Reduces Fermentation Losses in Intercropped Systems. Agriculture 2025, Vol. 15, Page 437, 15(4), 437. https://doi.org/10.3390/AGRICULTURE15040437
Meng, H., Xu, Y., Wang, L., Wang, J., Wang, B., Wu, H., Hou, D., Wang, S., Tong, X., Jiang, Y., & Wang, S. (2025). Impact of Lactiplantibacillus plantarum on the fermentation quality, nutritional enhancement, and microbial dynamics of whole plant soybean silage. Frontiers in Microbiology, 16, 1565951. https://doi.org/10.3389/FMICB.2025.1565951/BIBTEX
Okoye, C. O., Wang, Y., Gao, L., Wu, Y., Li, X., Sun, J., & Jiang, J. (2023). The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiological Research, 266, 127212. https://doi.org/10.1016/J.MICRES.2022.127212
Shinkai, T., Takizawa, S., Enishi, O., Higuchi, K., Ohmori, H., & Mitsumori, M. (2024). Characteristics of rumen microbiota and Prevotella isolates found in high propionate and low methane-producing dairy cows. Frontiers in Microbiology, 15, 1404991. https://doi.org/10.3389/FMICB.2024.1404991/BIBTEX
Sutowo, I., Adelina, T., & Febrina, D. D. (2016a). KUALITAS NUTRISI SILASE LIMBAH PISANG (BATANG DAN BONGGOL) DAN LEVEL MOLASES YANG BERBEDA SEBAGAI PAKAN ALTERNATIF TERNAK RUMINANSIA. 13(2), 41–47.
Sutowo, I., Adelina, T., & Febrina, D. D. (2016b). KUALITAS NUTRISI SILASE LIMBAH PISANG (BATANG DAN BONGGOL) DAN LEVEL MOLASES YANG BERBEDA SEBAGAI PAKAN ALTERNATIF TERNAK RUMINANSIA. 13(2), 41–47.
Talapessy, C., Rahayuningsih, M., Fidriyanto, R., Fitri, A., & Ridwan, R. (2024a). Daya Cerna dan Karakteristik Fermentasi Rumen dengan Penambahan Asam Amino Terenkapsulasi secara In Vitro: In Vitro Digestibility and Rumen Fermentation Characteristics with the Addition of Encapsulated Amino Acid. Jurnal Ilmu Nutrisi Dan Teknologi Pakan, 22(2), 85–90. https://doi.org/10.29244/JINTP.22.2.85-90
Talapessy, C., Rahayuningsih, M., Fidriyanto, R., Fitri, A., & Ridwan, R. (2024b). Daya Cerna dan Karakteristik Fermentasi Rumen dengan Penambahan Asam Amino Terenkapsulasi secara In Vitro: In Vitro Digestibility and Rumen Fermentation Characteristics with the Addition of Encapsulated Amino Acid. Jurnal Ilmu Nutrisi Dan Teknologi Pakan, 22(2), 85–90. https://doi.org/10.29244/JINTP.22.2.85-90
Tang, Y., Wang, Q., Li, Q., Wang, Y., Gong, L., Zhang, W., & Niu, J. (2025). Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage. Microorganisms, 13(9), 1973. https://doi.org/10.3390/MICROORGANISMS13091973/S1
Wang, S., He, Z., Jing, Y., Sun, L., Yang, G., Liu, B., & Gao, F. (2025). The Effect of Silage Microbial Inoculants on the Silage Quality of WL358HQ Alfalfa. Microorganisms 2025, Vol. 13, Page 1026, 13(5), 1026. https://doi.org/10.3390/MICROORGANISMS13051026
Wang, S. Y., Jing, Y. Y., Yang, G., Liu, B., & Gao, F. Q. (2025). Effects of inoculants on the quality of alfalfa silage. Frontiers in Microbiology, 16, 1541454. https://doi.org/10.3389/FMICB.2025.1541454/BIBTEX
Wróbel, B., Nowak, J., Fabiszewska, A., Paszkiewicz-Jasińska, A., & Przystupa, W. (2023). Dry Matter Losses in Silages Resulting from Epiphytic Microbiota Activity—A Comprehensive Study. Agronomy 2023, Vol. 13, Page 450, 13(2), 450. https://doi.org/10.3390/AGRONOMY13020450
Wu, C. W., Spike, T., Klingeman, D. M., Rodriguez, M., Bremer, V. R., & Brown, S. D. (2017). Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-02628-W
Wu, P., Liu, H., Guo, H., Maria De Souza Moretti, M., Borgonovi, T. F., Todorov, S. D., Lúcia, A., & Penna, B. (2025). Banana Pseudostem By-Product: A Sustainable Source of Prebiotics and Protection for Probiotic Lactic Acid Bacteria Under Gastrointestinal Conditions. Fermentation 2025, Vol. 11, Page 476, 11(8), 476. https://doi.org/10.3390/FERMENTATION11080476
Xiong, H., Zhu, Y., Wen, Z., Liu, G., Guo, Y., & Sun, B. (2022). Effects of Cellulase, Lactobacillus plantarum, and Sucrose on Fermentation Parameters, Chemical Composition, and Bacterial Community of Hybrid Pennisetum Silage. Fermentation, 8(8). https://doi.org/10.3390/fermentation8080356
Yang, J., Tan, H., & Cai, Y. (2016). Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. Journal of Dairy Science, 99, 5325–5334. https://doi.org/10.3168/jds.2016-10952